Posts tagged #trauma

Non-Accidental Trauma - A Can’t Miss Diagnosis

NAT image.png

Written by: Dana Loke, MD (NUEM PGY-4) Edited by: Ashley Amick, MD (NUEM ‘18) Expert commentary by: Lauren Riney, DO


Non-accidental trauma (NAT) is a leading cause of pediatric traumatic injury and death. In 2014 alone, there were 1546 reported deaths from NAT and 3.6 million child abuse referrals submitted to Child Protective Services (CPS). [1] NAT is most commonly encountered in young children, but can occur at any age. The classic signs and symptoms of NAT will be reviewed here, but it is important to realize that occult injury is common. Compared with accidental pediatric trauma, patients with NAT have been shown to have higher injury severity scores, rates of intensive care unit admission, and mortality. Furthermore, the diagnosis of NAT is delayed in 20% of cases, increasing the risk of poor outcomes.[2] Therefore, the Emergency Physician (EP) must maintain a high index of suspicion for NAT to prevent the grave consequences of missed diagnosis for the patient and any other children in the home.

Red Flags and Risk Factors

NAT is a frequently missed diagnosis, but there are some red flags and risk factors that should make the EP take pause and consider this diagnosis. Children at greatest risk are generally toddler and younger, and often come from dysfunctional family units. A recent study found that 97% of NAT cases have antecedent familial dysfunction, such as substance abuse (alcohol or drugs), psychiatric disorder, history of violence or incarceration, or child withdrawal. [3] Additionally, over 70% of reported NAT deaths in 2014 were in children under 3 years old. [1]

Red Flags

  • Injuries inconsistent with the caregiver’s history

  • Reported mechanism of injury is unexpected for the child’s developmental status (for instance, a 2 week old infant rolling off of a bed)

  • Delayed presentation

Risk Factors

  • Age under 5 account for 81.5% of cases; children under 1 are most vulnerable [3]

  • Prematurity

  • Multiple medical conditions

  • Young parent

  • Female parent (although males are more likely to inflict fatal NAT)

  • Poor social support

  • Unplanned or unwanted pregnancy

  • Poor prenatal care

  • Shorter birth intervals between children

  • Increased number of separations from the child in the first year

Abuser Characteristics

  • Poor self-esteem

  • Depression and suicide attempts

  • Life stressors

  • Personal history of being abused as a child

  • Exposure to foster care or abandonment as a child

  • Engagement in criminal activity or corporal punishment as a child

Many other suspected risk factors have been studied. There is no consensus regarding whether a particular race is at greatest risk for NAT however black children have a greater risk of mortality from NAT. [4] Similarly, there is no consensus regarding socioeconomic status as it relates to NAT risk, but studies have shown that incidence of non-accidental head trauma and its severity rise during times of economic recession. [4]


Figure 1:  Bruising patterns that suggest child abuse. [6]

Figure 1: Bruising patterns that suggest child abuse. [6]


Bruising is the most common manifestation of NAT but has low specificity. In any child presenting with bruising, it is imperative to note the location, shape and pattern of the lesion and ensure this is clearly documented. Bruising located over soft tissue areas such as the cheeks, neck, genitals, buttocks, torso, and back, are more likely to represent NAT than bruises over bony prominences. [4] The shape of the bruise should be considered as well, since the bruise often reflects the shape of the causative object. Common objects used to inflict injury include belts, cords, shoes, kitchen utensils, hangers, and teeth. [4] Additionally, patterned bruises should raise suspicion for NAT since they generally do not occur with accidental trauma. Lastly, any bruising in non-mobile infants is suspicious for NAT as well. [5]

Figure 2:  Forced immersion burn of buttocks with bilateral, symmetric leg involvement in a “stocking” pattern. [7]

Figure 2: Forced immersion burn of buttocks with bilateral, symmetric leg involvement in a “stocking” pattern. [7]


Burns occur in 8-12% of NAT cases. [2] The most common types of burns from NAT are scald burns and thermal contact burns. Scald burns are the most common and typically occur from forced immersion in hot liquids, usually of the buttock, or in a stocking-and-glove distribution. Scald burns generally have sharp demarcation, uniform depth, and lack splash or drip marks that would be seen in an accidental immersion. Thermal burns occur from contact with hot objects, of which branding with metal implements or cigarettes is a common presentation. Concerning features of burns include:

  • Location on the hands (especially the dorsum), legs, feet, or buttocks

  • Patterned contact burns in the shape of an object (such as a fork, clothing iron, curling iron, or cigarette lighter)

  • Sharp stocking-and-glove pattern with sparing of the flexed protected areas (the classic forced immersion burn pattern)

Figure 3:  Classic metaphyseal lesion. White arrows denote femoral metaphyseal separation and black arrow denotes a proximal tibial lesion or “bucket handle.” [1]

Figure 3: Classic metaphyseal lesion. White arrows denote femoral metaphyseal separation and black arrow denotes a proximal tibial lesion or “bucket handle.” [1]


There are various non-accidental fracture patterns, several with high specificity as described below: 

  • Classic metaphyseal lesion (CML) – Also known as “bucket handle fractures” or “corner fractures,” these fractures are highly specific in children less than one year old. They result from a shearing force applied to a long bone, which causes avulsion of the metaphysis. These fractures are not associated with falls.

  • Multiple posterior and/or lateral rib fractures – These fractures also have a high correlation with NAT in children less than one year old. They arise from a specific mechanism – grasping the child around the torso and exerting a squeezing/compressive force. These fractures are more likely to affect the rib head and neck given the closer proximity to the transverse processes of the spine. NAT should especially be considered when healing fractures are found in a child without recent CPR.

Figure 4:  Posterior and lateral rib fractures of differing ages indicative of NAT [4]

Figure 4: Posterior and lateral rib fractures of differing ages indicative of NAT [4]

  • Clavicular fractures and spiral fractures of long bones in nonambulatory children

  • Multiple fractures, especially if in different stages of healing

  • Scapular fractures

  • Sternal fractures

  • Spinous process fractures

Of note, spiral fractures of long bones generally result from twisting injuries (indicating NAT), but can occur accidentally from falls in ambulatory children. Therefore, these fractures (especially if coupled with clavicular fractures) are more specific for NAT in younger patients, and the specificity decreases with advancing age. Other described non-accidental patterns to consider include epiphyseal separations, vertebral body fractures and separations, digital fractures, linear and complex skull fractures, and subperiosteal bone formation. These patterns have low to moderate specificity for NAT. [1] 

Abusive Head Trauma

Abusive head trauma (AHT) is the most fatal form of non-accidental injury in children. In fact, about 80% of deaths from NAT are caused by AHT and only 15% of patients with AHT survive without any sequelae. [4] AHT is a spectrum of injuries including collisions with stationary objects, direct blows to the head, and a repetitive acceleration- deceleration injury, also known as “Shaken Baby Syndrome.” Infants are particularly vulnerable to traumatic brain injury from shaking due to the relative weight of the head compared to the body, coupled with weak neck musculature. [1] If AHT is suspected, a non-contrast head CT should be obtained even with a nonfocal neurologic examination, because occult intracranial injury is common. Make sure to use age-appropriate dose reduction to minimize radiation exposure and if the CT scan is normal, consider further work-up with an MRI.

Figure 5:  Fundus of child with AHT with too-numerous-to-count retinal hemorrhages indicated by the black arrows. [8] The white arrow indicates small pre-retinal hemorrhages. The white arrowhead denotes hemorrhage extending into the peripheral retina. The black arrowhead denotes a healthy optic disc.

Figure 5: Fundus of child with AHT with too-numerous-to-count retinal hemorrhages indicated by the black arrows. [8] The white arrow indicates small pre-retinal hemorrhages. The white arrowhead denotes hemorrhage extending into the peripheral retina. The black arrowhead denotes a healthy optic disc.

Ocular Manifestations

Although there are many ocular manifestations associated with non-accidental head injuries, retinal hemorrhages occur most often (about 60-85% of non-accidental head injuries). [4] Suspicion for NAT should be especially heightened when retinal hemorrhages are found in combination with signs of head trauma. Other ocular manifestations of NAT include periorbital hematoma, eyelid laceration, subconjunctival hemorrhage, subluxed or dislocated lens, cataracts, glaucoma, anterior chamber angle regression, iridiodialysis, retinal dialysis or detachment, intraocular hemorrhage, optic atrophy, or papilledema. [4] 

Management and Disposition

All patients with suspected NAT should be admitted for protection and coordination of care even if they are clinically stable. Child Protective Services (CPS) must be notified, and engagement with the institutional social worker and child abuse team is recommended. It is important to note patients with NAT often have worse outcomes than other assault patients despite similar mechanisms of injury with intent to harm. [9] These patients often require close monitoring with Intensive Care Unit (ICU) resources. Patients with NAT should undergo a full skeletal survey as indicated in Figure 6 with additional imaging (CT, MRI) tailored to each patient. For instance, CT abdomen and pelvis should be obtained per general trauma guidelines, particularly if there is suspicion for solid organ or visceral injury. 

Figure 6:  Elements of the Skeletal Survey. Although a full skeletal survey is currently the standard of care for patients with NAT, there are ongoing research efforts to tailor X-ray imaging more specifically to each patient. [1]

Figure 6: Elements of the Skeletal Survey. Although a full skeletal survey is currently the standard of care for patients with NAT, there are ongoing research efforts to tailor X-ray imaging more specifically to each patient. [1]

Other diagnoses to consider in these patients include metabolic bone disease (such as rickets, Caffey disease, and osteogenesis imperfecta), blood dyscrasias, benign enlarged subarachnoid spaces (BESS), glutaric aciduria type 1 (which causes brain atrophy and subdural fluid collections). [1] However NAT is far more common than these diagnoses and carries significant morbidity and mortality when overlooked so should be considered and worked-up prior to these diagnoses.

Key Points

  • Pediatric NAT causes significant morbidity and mortality, and therefore EPs must maintain a high degree of suspicion for this diagnosis.

  • Red flags during evaluation include a changing or inconsistent history, injuries inconsistent with the history, an unexpected mechanism of injury based on the child’s developmental status, and delayed presentation despite significant injury.

  • Risk factors for NAT include children younger than school age (with children younger than 1 being most vulnerable), family dysfunction, prematurity, multiple medical conditions, young/female parent, poor social support, unplanned or unwanted pregnancy, poor prenatal care, numerous separations from the child in the first year of life, and history of psychiatric issues, stressors, criminal activity, or childhood abuse or abandonment in the abuser.

  • Although physical exam findings can be non-existent or non-specific, highly specific findings include bruising over soft tissue areas; bruises/burns that are patterned take the form of an object; any bruising in a non-mobile child; scald burns on the hands, legs, feet, or buttocks; and stocking-and-glove patterned burns.

  • Highly concerning fracture patterns include classic metaphyseal lesions (“bucket handle fractures” or “corner fractures”), multiple posterior and/or lateral rib fractures, clavicular or spiral long bone fractures in any nonambulatory child, multiple fractures, fractures in different stages of healing, scapular fractures, sternal fractures, and spinous process fractures.

  • There is a wide range of ocular manifestations in NAT but the most common manifestation is retinal hemorrhage(s).

  • AHT carries the highest mortality rate of all the injuries associated with NAT. Any suspicion for AHT warrants consideration of a non-contrast head CT.

  • Notify Child Protective Services (CPS) and admit these children for further NAT work-up including a full skeletal survey.

Expert Commentary

Excellent overview of NAT in the Emergency Department with emphasis on risk factors and manifestations. I want to add a few pearls about NAT and then will focus my commentary on NAT management in the ED as well as discussion with families, as this was recently a large quality improvement project in our pediatric tertiary care center.

Neglect is the most common form of child abuse accounting for about two-thirds of all forms of abuse and often accompanies other forms of abuse. (1) Neglect is involved in about 50% of all cases of fatal child abuse. (1) Among children less than 1 year of age, 25% of fractures are a result of abuse. (2) Consider two things: does the explanation the provider stated account for the fracture the child has sustained? Is the child developmentally capable of the action being described? After 2 years of age, the history and physical exam should determine the imaging required. Over 5 years of age, the yield of unsuspected fractures from a skeletal survey is only 9%, making this group more amenable to selective radiographic studies. (3) 

Diagnosis of NAT in children remains a challenge due to provider bias, preconceptions, and failure to recognize the presentation as possible abuse. (4,5) As a result, these injuries may go undetected, leading to further injury prior to diagnosis. An estimated 25% of children ultimately diagnosed with NAT have a sentinel injury prior to their abuse diagnosis. (6,7) Of abused children with a previous sentinel injury, the most common were a bruise (80%), a torn frenulum (11%), or a fracture (7%). (8) A large retrospective chart review estimated 80% of deaths from unrecognized abusive head trauma may have been prevented by earlier detection of NAT. (6) The American Academy of Pediatrics (AAP) states that “ANY injury to a young, pre-ambulatory infant” suggests abuse. (9)

Figure 1:  Standardized Physical Abuse Guideline.

Figure 1: Standardized Physical Abuse Guideline.

At our institution, a team of pediatric emergency medicine physicians and child abuse pediatricians convened to develop and implement a standardized NAT guideline for providers in the ED when evaluating children with suspected NAT (Figure 1 Standardized Physical Abuse Guideline). This work stemmed from a chart review showing there was significant variability in the evaluation and management of children with concern for NAT in our Pediatric Emergency Department. The guideline was based on current peer reviewed literature as well as local expert consensus. It is divided into three separate age groups:  < 6 months, 6-12 months, and >12-36 months. Age groups were determined based on risk of injury at different age levels in described literature, acquisition of milestones as age progresses, and increased ability for young children to show specific signs of injury with increasing age.  

Lastly, the evaluation of NAT is stressful for both families and healthcare providers. The second page of our NAT guideline gives a sample script for EPs when discussing the non-accidental trauma evaluation for children. It states, “Any time a child comes to the hospital with this injury/these injuries, we evaluate for other injuries. Sometimes a child can have internal injuries such as fractures, head injury or abdominal injuries that we cannot see on the outside. Just like you, we want to make sure that your child is okay, so it is important to do this testing. We will also have our social worker come talk to you. This is a standard part of our evaluation. We are happy to answer any questions along the way”. It is important to acknowledge that this process is stressful, time consuming, and not comfortable for the child. Explaining each part of the process is important. Ensure that you use language that is non-accusatory. As EPs, we are not the ones to identify who the perpetrator is/was, but rather ensure the full NAT evaluation is completed and allow social work and/or Child Protective Services to determine further action. 

Non-accidental trauma remains too prevalent in our country. Literature continues to show that unrecognized NAT leads to worse injuries and sometimes fatality. Continuing knowledge and education about injuries suspicious for NAT for EPs remains imperative. Standardized evaluations and real time order sets can increase appropriate management of NAT in the Emergency Department.  


  1. Dubowitz H. Epidemiology of Child Neglect. CAN 2011, pp 28-34.

  2. Kaczor K, Clyde Pierce M. Abusive Fractures. CAN 2011, pp 275-295.

  3. Martich KV. Imaging of Skeletal Trauma in Abused Children. CAN 2011, pp 296-308.

  4. Higginbotham N, Lawson KA, Gettig K, et al. Utility of a child abuse screening guideline in an urban pediatric emergency department. J Trauma Acute Care Surg. 2014;76(3):871-877. 

  5. Tiyyagura GK, Gawel M, Koziel JR, et al.  Barriers and facilitators to detecting child abuse and neglect in general emergency departments. Annals of Emergency Medicine. 2015;66(5):447-454. 

  6. Jenny C, Hymel K, Ritzen A, et al. Analysis of missed cases of abusive cases of head trauma. JAMA. 1999;282:621-6.

  7. Rangel EL, Cook BS, Bennett BL, et al. Eliminating disparity in evaluation for abuse in infants with head injury: use of a screening guideline. Journal of Pediatric Surgery. 2009; 44(6):1229-34.

  8. Sheets LK, et al. Injuries in Infants Evaluated for Child Physical Abuse. Pediatrics. 2013, pp 701-707.

  9. Christian CW, Committee on Child Abuse and Neglect. The evaluation of suspected child physical abuse. Pediatrics. 2015;135:e1337–e1354.


Lauren C. Riney, DO

Assistant Professor

Division of Emergency Medicine

UC Department of Pediatrics

How to Cite this Post

[Peer-Reviewed, Web Publication] Loke D, Amick A. (2019, Oct 7). Non-Accidental Trauma. [NUEM Blog. Expert Commentary by Riney C]. Retrieved from

Other Posts You Might Enjoy


  1. Pfeifer, C.M., Hammer, M.R., Mangona, K.L., & Booth, T.N. (2017). Non-accidental trauma: the role of radiology. Emerg Radiol, 24, 207-213.

  2. Kim, P.T. & Falcone, R.A. (2017). Non-accidental trauma in pediatric surgery. Surgical Clinics of North America, 97.1, 21-33.

  3. Child maltreatment 2014. Report, Children’s Bureau. Washington, DC: U.S. Department of Health and Human Services; 2014. Available at: http://www.acf.

  4. Paul, A.R. & Adamo, M.A. (2014). Non-accidental trauma in pediatric patients: a review of epidemiology, pathophysiology, diagnosis and treatment. Transl Pediatr, 3, 195-207.

  5. Maguire, S., Mann, M.K., Sibert, J. & Kemp, A. (2005). Are there patterns of bruising in childhood which are diagnostic or suggestive of abuse? A systematic review. Arch Dis Child, 90, 182-186.

  6. Boos, S.C. (2017). Physical child abuse: Recognition. Retrieved April 21, 2017, from

  7. Hobbs, C.J. (1986). When are burns not accidental? Archives of Disease in Childhood, 61, 357-361.

  8. Binenbaum G., Rogers, D.L., Forbes, B.J., Levin, A.V., Clark, S.A., Christian C.W., Liu, G.T., & Avery R. (2013). Patterns of retinal hemorrhage associated with increased intracranial pressure in children. Pediatrics, 132, 430-434.

  9. Litz, C.N., Ciesla, D.J., Danielson, P.D. & Chandler, N.M. (2017). A closer look at non-accidental trauma: Caregiver assault compared to non-caregiver assault. Journal of Pediatric Surgery, 52, 625-627.

Posted on October 7, 2019 and filed under Pediatrics, Trauma.

Unstable Cervical Spine Fractures

Screen Shot 2019-01-02 at 5.45.38 PM.png

Written by: Sarah Sanders, MD (NUEM PGY-4) Edited by: Alison Marshall, MD (NUEM Alum ‘17) Expert commentary by: Steve Hodges, MD

Fractures of the cervical spine are injuries that must be approached with caution. Some are stable, some are unstable, and mismanagement can lead to life-altering sequelae. Remembering which fractures fit into which category is imperative for optimum emergency department care.

A quick review of cervical spine anatomy is a helpful starting point:

All the cervical spine anatomy images are credited to Netter, FH Atlas of Human Anatomy, Sixth Edition.


All the cervical spine anatomy diagrams are credited to Agur, AMR & Dalley, AF of Grant’s Atlas of Anatomy: Twelfth Edition.

The common mnemonic “Jefferson Bit Off A Hangman’s Thumb,” is used to remember the unstable fractures, which will be reviewed in this post.

Screen Shot 2019-01-05 at 10.59.28 PM.png
Screen Shot 2019-01-05 at 11.05.37 PM.png
Screen Shot 2019-01-05 at 11.09.01 PM.png
Screen Shot 2019-01-05 at 11.10.04 PM.png
Screen Shot 2019-01-05 at 11.10.49 PM.png

Ultimately, understanding the mechanism of injury is crucial in identifying and accurately managing these injuries. The below PV cards are organized by mechanism and tailored down to be an on-shift reference.

In conclusion, cervical spine injuries required a high index of suspicion and caution by the emergency medicine physician as their variability and potential for neurological impairment is high. Hopefully this review can provide you with additional insight and ease of memory when the next Level 1 trauma rolls through the door.  

Expert Commentary

Thanks for this insightful post.  You've done a really nice job in laying out the most salient points.  It is important to have an understanding of the anatomy and this is a great review.  Knowing the factors that put people a high risk for injury is also paramount.   Certain chronic disease states and anatomic variances, as you note, do put select patient populations at risk for specific injury.  The mechanism of injury is something we always talk about, but when it comes to neck trauma we need to really pay attention to all available history including paramedic reports, or even cell phone video, to get the best possible picture or the mechanism of injury.   I can not stress enough the importance of a detailed neurological exam including sensation(s) and reflexes.  Any asymmetric finding should raise your level of suspicion for severe injury.   Moving to advanced imaging is especially important if there is a complaint of a focal neurological deficit; be that transient, subjective or blatantly obvious. 

Athletes or motorcyclist who have suspected cervical spine injury, who have protective shoulder pads and/or helmets pose a unique challenge.  Eventually the protective devices are going to need to be removed.   There are many opinions on how best to do this and whether an x-ray should be done before attempting the removal of protective gear.   From personal experience; it can be difficult to remove protective gear;  I recommend getting "all hands on deck" and using an methodical slow organized approach.  More recent thought is that cervical spine imaging should incorporate procedures for removal of equipment before initial radiographic evaluation.[1]  Once the gear is removed a c-collar should then be applied and you can proceed with imaging.

Recommendations for imaging the cervical spine for trauma has changed quit a lot over the last several years.  The National Emergency X-Radiography Utilization Study (NEXUS) and the Canadian C-Spine Rule (CCR) have been validated and have allowed our practice to advance such that we can effectively practice clinical medicine.  However, a word of caution on using these criteria with patients who could be impaired.  Sometimes the mild dementia, delirium or subtle drug, alcohol intoxication can lead us astray when we rely solely on these criteria.   The cross table lateral films and specifically flexion/extension views have fallen out of favor.  Most patients without focal neurological complaint or deficit are imaged with plain CT.  If your patient has a focal neurological complaint or deficit, a suspected ligamentous or disc injury an MRI should be done.  Depending on the exam and risk factors I would consider either a CTA or and MRA to evaluate for vascular injury.  

You asked about c-collars specifically.  What is available to you will be somewhat hospital - vendor specific.  I prefer the Aspen or the Miami collar, they are very similar in function overall and superior to the pre-hospital EMS ones.  When a patient has to be transported to another facility; make sure that the patient has full immobilization with back board and head-side blocks with the collar and head secured to the side blocks.    An immobilized patient that requires intubation can make an easy air way difficult and a difficult airway terrifying.  Make sure you have all your equipment prepared, including a surgical method, before you intubate.  The person holding c spine immobilization needs to knows their role.....don't let go and don't move.  This is the time when a video assisted intubation should be used.  Use either the intubating bronchoscope or a video laryngoscope.   This article talks a bit about managing airway in cervical spine injury and is a nice reference.[2]

Closing thoughts: maintain a high level of suspicion for injury in the setting of a focal neurological deficit, immobilize early immobilize often and don't be shy about intubating before transferring. 

  1.  Annals of Emergency Medicine; Baldwin et. al., "Football protective gear and cervical spine imaging" July 2001 Volume 38, Issue 1, Pages 26–30

  2. 10.4103/2229-5151.128013    International Journal of Critical Illness and Injury Science; Austin et. al., "Airway management in cervical spine injury" Jan-Mar; 4(1): 50–56


Steven W. Hodges, MD, FACEP

Assistant Medical Director

Northwestern Lake Forest Hospital

How To Cite This Post

[Peer-Reviewed, Web Publication] Sanders S, Marshall A (2019, January 21). Unstable Cervical Spine Fractures [NUEM Blog. Expert Commentary by Hodges S]. Retrieved from

Other Posts You May Enjoy


  1. Adams, J. Lin, M. Mahadevan, SV. “Spine Trauma and Spinal Cord Injury.” Section VIII, Chapter 75. Emergency Medicine: Clinical Essentials. Second Edition. P652 - 657.  

  2. Agur, AMR; Dalley AF. Grant’s Atlas of Anatomy. Twelfth Edition. Chapter 4: Back. 2009.

  3. Bergenheim, AT, Forssell, A. “Vertical Odontoid Fracture. Case Report.” Journal of Neurosurgery. Vol 74 (4) p665-667. 1991.

  4. Netter, F. Atlas of Human Anatomy. Section Head & Neck. Sixth Edition. 2014.

  5. Wheeless, CR. “Cervical Spine.” Wheeless Textbook of Orthopedics by Duke University. April 26 2016. 2 Jan 2017. 

Posted on January 21, 2019 and filed under Trauma.


Screen Shot 2019-01-02 at 5.08.24 PM.png

Written by: Andew Cunningham, MD (NUEM PGY-4) Edited by: Bill Burns, MD (NUEM Alum ‘17) Expert commentary by: Zaffer Qasim, MBBS, FRCEM, FRCPC(EM), EDIC

REBOA: Ready for Prime Time?

 For years, the resuscitative thoracotomy has been the sole weapon in the physician’s arsenal against a loss of a perfusing pressure in the crashing trauma patient. With the advent of new endovascular technologies, novel methods to control hemorrhage are being refined, among them Resuscitative Endovascular Balloon Occlusion of the Aorta or REBOA. With this newer method getting a lot of attention in the emergency and trauma communities, it’s time to take a look at what it is, how successful it is, and where we are going with it.


What Is It?

  • Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a possible alternative to resuscitative thoracotomy in cases of non-compressible torso hemorrhage (NCTH) that present to the Emergency Department in extremis.1

  • REBOA works via the insertion of a catheter through the femoral artery to allow an endovascular balloon to be deployed within the aorta, allowing for bleeding control and augmentation of afterload in hemorrhagic shock.2

  • REBOA can be deployed in Zone III of the Aorta, as depicted in the image below, for pelvic hemorrhage, or in Zone I of the Aorta for abdominal hemorrhage.3

Borrowed from Reference 3

Borrowed from Reference 3

  • The primary indications for REBOA include:

    • PEA arrest secondary to abdominal or pelvic hemorrhage within 10 minutes of the onset of arrest

    • Severe hypovolemic shock secondary to abdominal or pelvic hemorrhage

    • Unstable hemodynamics refractory to volume resuscitation in patients with abdominal or pelvic hemorrhage2

  • The major contraindications include age older than 70, significant comorbidities, prolonged PEA arrest (lasting longer than 10 minutes),  or high suspicion for proximal aortic injury (REBOA may exacerbate bleeding from thoracic sources).2

Does It Work?

  •  A study at U of Arizona showed that 45% of patients who received thoracotomy may have benefited from REBOA based on autopsy results, but only 32% of the patients receiving a thoracotomy did not have a contraindication for it, and of those who did not have a contraindication, only roughly half would have potentially benefited. Compared to prior literature, this may suggest that REBOA is not as useful in patients in extremis.1

  • Although the literature does suggest that REBOA reduces the amount of overall hemorrhage, there is still no definitive evidence in humans of a decrease in mortality.4

  • There are still risks of complications in humans, including arterial injury and limb ischemia.3 In animal models, REBOA has also resulted in renal failure, liver failure, intestinal ischemia, and multiple other injuries which result from occlusion of the aorta.5

  • Given that REBOA still obstructs distal flow, just like cross-clamping the aorta in a resuscitative thoracotomy, it is still reserved as a last resort maneuver. The effects of aortic occlusion can be reviewed below6:

Borrowed from Reference 6

Borrowed from Reference 6

Where Is It Going?                      

  •  An alternative to REBOA may be Selective Aortic Arch Perfusion (SAAP); in this similar yet separate endovascular approach, a catheter that has two ports is utilized instead of the single-port REBOA catheter. This allows for both occlusion of the aorta and selective administration of blood, pressors, or other medications directly to the heart and brain. Where REBOA may be useful for exclusively shock, SAAP may have advantages in cardiac arrest secondary to trauma.7

  • A new, smaller REBOA catheter, the 7 French ER-REBOA, may cause fewer injuries and also allows for simultaneous blood pressure monitoring.8

  • Partial REBOA, or P-REBOA, allows for controlled blood flow to the body distal to the area of occlusion, in efforts to limit ischemia.5 

Is It Feasible for ER Docs to Perform?

  •  Yes! Some of the larger studies performed in Japan required placement by either a surgical or emergency medicine-trained attending.9

  • In England, there are case of REBOA being deployed in the pre-hospital setting to act as a bridging method for resuscitation during transport.7 As the relay between the hospital and Emergency Medical Services, it is an EM physician’s responsibility to be aware of this method and its utility in her area.

Take-Home Points

  • REBOA is a newer up-and-coming method of controlling hemorrhage secondary to abdominopelvic trauma that may act as an alternative to resuscitative thoracotomy.

  • Although more data still needs to be collected, REBOA has not yet shown to clearly improve mortality, and does come with certain risks and complications.

  • There are more novel methods of REBOA undergoing research and development, including SAAP, ER-REBOA, and P-REBOA, which may strengthen the utility of REBOA and reduce some of the complication risks.

  • REBOA is within an EM physician’s scope of practice, and may play a role in EMS in the future. As such, it is our duty to be aware of it and follow along with its developments.

Expert Commentary

Thanks for a great post on an evolving temporary hemorrhage control concept.  Hemorrhage, and torso hemorrhage in particular, remains the largest cause of death in trauma in the first 24 hours.  In the right patient, REBOA can be another effective procedure in the emergency physician’s toolbox.  Some additional points to consider:

1.     Access is key!  The rate limiting step is early common femoral artery (CFA) access.  It’s important to emphasize accessing the common as placing the sheath in one of the smaller branch vessels could increase the risk of iatrogenic injury.  I advocate using ultrasound to define the anatomy and routinely placing a CFA arterial line in your “big sick” patients to maintain skills.  As you state, this step is well within the wheelhouse of the Emergency Physician, and the foundation to build on to train in placing REBOA

2.     Patient selection is critical! The available data generally has the inclusion/exclusion criteria listed, but definitions on who is “unstable” vary. In my opinion, an arbitrary blood pressure cutoff of <90mmHg in someone with torso hemorrhage should not automatically trigger REBOA. I think these patients should get a CFA line, and then proceed to REBOA only if not responding to initial resuscitative measures or rapidly deteriorating to imminent arrest.

3.     Placement before arrest will likely lead to better outcomes.  The evolving data shows that the group that benefits most in terms of mortality are the nonresponders who will imminently arrest unless they have a lifesaving procedure.  In the arrested patient, as mentioned, determining the time of arrest is crucial. This can certainly be challenging with prehospital arrest.

4.     While the data does not show improved mortality compared to thoracotomy, there does seem to be a trend to improved neurologically intact survival – this is our ultimate goal and speaks to the ability to use REBOA proactively, before traumatic arrest happens

5.     It is absolutely critical that REBOA is used in a system that can rapidly deliver these patients to definitive care (OR/IR). The consequences of prolonged balloon occlusion as listed are dire.  Based on collective clinical experience and translational animal data, I would not recommend occluding beyond 45 minutes to 1 hour in Zone 1.

6.     REBOA in the US is currently used only at level 1 and 2 trauma centers. I think (as the British have shown), the biggest benefit is likely at smaller centers and ultimately prehospital.  Success here will be based on procedural considerations (like p-REBOA to prolong safe inflation times), appropriate training, and systems issues (expedited transfer to definitive care). 



Assistant Professor of Clinical Emergency Medicine

UPenn Medicine

How to Cite This Post

[Peer-Reviewed, Web Publication]  Cunningham A, Burns W (2019, January 7). REBOA [NUEM Blog. Expert Commentary by Qasim Z]. Retrieved from

Other Posts You May Enjoy


  1. Joseph B, Ibraheem K, Haider AA, et al. Identifying potential utility of resuscitative endovascular balloon occlusion of the aorta: An autopsy study. J Trauma Acute Care Surg. 2016;81:S128-S132.

  2. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). Vol 2016. LIFTL.

  3. Napolitano LM. Resuscitative Endovascular Balloon Occlusion of the Aorta: Indications, Outcomes, and Training. Crit Care Clin. 2017;33:55-70.

  4. Morrison JJ, Galgon RE, Jansen JO, Cannon JW, Rasmussen TE, Eliason JL. A systematic review of the use of resuscitative endovascular balloon occlusion of the aorta in the management of hemorrhagic shock. J Trauma Acute Care Surg. 2016;80:324-334.

  5. Perkins ZB, Lendrum RA, Brohi K. Resuscitative endovascular balloon occlusion of the aorta: promise, practice, and progress? Curr Opin Crit Care. 2016;22:563-571.

  6. Russo RM, Neff LP, Johnson MA, Williams TK. Emerging Endovascular Therapies for Non-Compressible Torso Hemorrhage. Shock. 2016;46:12-19.

  7. Bebarta V. REBOA - Ready for Prime Time? ACEP EM Education.

  8. Weingart S. Podcast 170 - the ER REBOA Catheter with Joe DuBose. Vol 2016. EMCrit Blog.:Available at [].

  9. Saito N, Matsumoto H, Yagi T, et al. Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta. J Trauma Acute Care Surg. 2015;78:897-903; discussion 904.


Posted on January 7, 2019 and filed under Trauma.

Topical Hemostatics

Screen Shot 2018-10-28 at 5.33.44 PM.png

Written by: Alex Ireland, MD (NUEM PGY-3) Edited by: Andrew Moore, MD (NUEM Alum ‘18) Expert commentary by: Joseph Posluszny, MD

Ireland (1).png

Expert Commentary

The above summary of the mechanism of actions, indications for and limitations of topical hemostatic agents is comprehensive and thorough.

As with most summaries of hemostatic agents, we focus on the mechanism of action or aspect of coagulation by which the agent works.  Clinically, it may be easier to take a different approach.

Sometimes, the most difficult aspect of applying a topical hemostatic agent is determining the appropriate agent given the clinical scenario- all work in some fashion, but which will work best?

To help approach this, an initial question to help frame what to do in the trauma bay or ED would be: does this wound require just a hemostatic agent as a covering/dressing to promote hemostasis or are both assisted hemostasis and pressure needed to control the bleeding?  For superficial, low volume, but persistently bleeding wounds, topical agents like Dermabond, thrombin (with gelfoam) and Surgicel are ideal.  For deep, complex wounds that require hemostatic agents and pressure, QuikClot Gauze, Ativene and Combat Guaze are more effective.

Hospitals and EMS systems purchase a variety of topical hemostatic agents.  It is imperative to become familiar with these agents and be prepared for their indications before you are presented with bleeding uncontrolled by conventional dressings or pressure.


Joseph Posluszny, MD

Assistant Professor of Surgery

Trauma and Critical Care, McGaw Medical Center of Northwestern University

How to Cite this Post

[Peer-Reviewed, Web Publication]  Ireland A, Moore A (2018, December 10). Topical Hemostatics  [NUEM Blog. Expert Commentary by Posluszny J]. Retrieved from

Posted on December 10, 2018 and filed under Trauma.

Bad Blood

Written by:  Ade Akhetuamhen ,  MD (NUEM PGY-2)  Edited by:  Spenser Lang, MD (NUEM Alum ‘18)  Expert commentary by : Matthew Levine, MD

Written by: Ade Akhetuamhen, MD (NUEM PGY-2) Edited by: Spenser Lang, MD (NUEM Alum ‘18) Expert commentary by: Matthew Levine, MD


Expert Commentary

Dr Akhetuamhen has provided a nice quick reference for topical hemostatic agents (THAs).  These agents have become more relevant in recent years, particularly in prehospital care, as the prehospital emphasis has shifted from resuscitating hemorrhage more towards hemorrhage control.  Much of our knowledge of these dressings come from battlefield studies of major hemorrhage.  Their use has been formally endorsed by the American College of Surgeons Committee on Trauma in 2014, particularly for junctional site hemorrhaging.  Dr Akhetuamhen has listed the properties of the ideal THA.  No current product fulfills all of these criteria.

Much of what we know about these agents comes from military studies.  There are limitations to these studies. There are fewer human studies, and these tend to be retrospective, observational, and based on questionnaires.  The possibility of reporting bias exists in these studies and study design made it impossible to control for the type of wound.  There are far more animal studies.  Animal studies allow for the ability to control for wound type, but are more difficult to simulate real life wounds from missiles or shrapnel.

Hemcon and Quickclot products were the earliest products studied by the military and became the early THA gold standards after they were determined to be more effective than standard gauze.  An earlier concern for Quickclot was exothermic reactions from the activated products that caused burns to patients.  As Quickclot transitioned its active ingredient from zeolite to kaolin, this concern diminished.  Quickclot is available in a roll called Combat Gauze that is favored by the military and available in our trauma bay.

Finally, there are some important practical tips for using these products.  THAs are not a substitute for proper wound packing and direct pressure.  Most topical hemostatic agent failures in studies were from user failure!  THAs must come into contact with the bleeding vessel to work.  Simply applying the THA over the bleeding areas does not mean it is contacting the bleeding vessel.  The product may need to be trimmed, packed, shaped or molded in order to achieve this.  Otherwise it is simply collecting blood.  After it is properly applied, pile gauze on top of it and give firm direct pressure for several minutes before checking for effectiveness. 

See what THA(s) you have available in your trauma bay, it is nice to know ahead of time before presented with a hemorrhaging patient what you have and in what form (a roll, sponge, wafer, etc).  Find out how the product is removed.  It may not be relevant to the patient’s ED stay but at some point the dressing needs to come off.   Some are left to fall off on their own.  The chitosan products are removed by soaking them.  When soaked, the chitosan turns slimy and can be slid off atraumatically.


Matthew Levine, MD

Assistant Professor of Emergency Medicine

Northwestern Medicine

How to Cite this Blog

[Peer-Reviewed, Web Publication]   Akhetuamhen A, Lang S (2018, October 29). Bad Blood.  [NUEM Blog. Expert Commentary by Levine M]. Retrieved from

Other Blogs You May Enjoy

Posted on October 29, 2018 and filed under Hematology.

Quick Guide to Minor Facial Trauma: Part I

In the emergency department, we commonly encounter minor injuries to the face and mouth.  In a two part series, we will provide a short overview of some helpful strategies for dealing with these cosmetically sensitive injuries in an effective manner.